DOI: 10.14451/2.124.70

ФАКТОРЫ УСПЕШНОСТИ ИННОВАЦИОННОЙ КООПЕРАЦИИ НАЦИОНАЛЬНЫХ ПРОМЫШЛЕННЫХ КЛАСТЕРОВ

© 2018 Карлик Александр Евсеевич

доктор экономических наук, профессор

заведующий кафедрой экономики и управления предприятиями и производственными комплексами Санкт-Петербургский государственный экономический университет

> 191023, Санкт-Петербург, ул. Садовая, д. 21 E-mail: karlik1@mail.ru

© 2018 Карпичев Евгений Владимирович

соискатель кафедры экономики и управления предприятиями и производственными комплексами Санкт-Петербургский государственный экономический университет

191023, Санкт-Петербург, ул. Садовая, д. 21 E-mail: kev@szfo.gov.ru

Задачей настоящей публикации автор определил анализ кластерного развития национальной промышленности. Предмет анализа: ключевой фактор эффективности промышленной агломерации — кооперационные процессы субъектов кластера. Предложена оценка уровня инновационной кооперации национальных промышленных кластеров и сопоставление ее с пороговыми значениями «Глобальной кластерной обсерватории». Кейс анализ позволил выделить факторы успешности кооперации промышленных кластеров.

Ключевые слова: кооперация, инновации, кластеры, экономика промышленности.

Ориентация на кластерную модель развития промышленности в Российской Федерации объективно обоснована исторически сложившимся пространственным распределением производительных сил и производственных отношений, региональной картой концентрации производств [1]. Экономический смысл кластеризации академически рассматривается через «МАR-эффекты» и «интенсификацию инновационной активности», выходящую на первый план в условиях экономики знаний. Инновационная кооперация определяется ядром хозяйственных отношений, экономическим смыслом кластерного объединения.

В настоящее время в поле статистическо-

го наблюдения включены 104 промышленных кластера, имеющих различную форму организационного оформления и институционализации по отношению к регулирующим кластерную политику и стратегию органам (Минэкономразвития, Минпромторг, Аппарат президента), действующих в поле 45 законодательных актов. Мониторинговая функция делегирована «Российской кластерной обсерватории» и региональным информационным центрам.

Автором обобщены статистические показатели национального кластерного развития (табл. 1) с дифференциацией по уровню технологичности промышленных производств.

Таблица 1. Статистические показатели национальных промышленных кластеров 2018. (Обобщено автором по данным «Российской кластерной обсерватории»)

Показатели	Уровень технологичности			
	Вы-	Средне-	Низко-	
	соко-			
Число организационно оформленных кластеров	46	39	19	
Год (средний) организационного оформления	2012	2014	2013	
кластеров				
Суммарная численность участников, ед.	1390	1205	476	
Средняя численность субъектов кластеров	30,22	30,9	25,05	
участников, ед.				
Суммарная численность работников кластера,	543070	610638	156783	
чел.				
Средняя численность работников кластера, чел.	11805,9	15657,4	8251,7	

Несмотря на относительно небольшой период (2012–2018) организационного оформления (в экономически развитых странах объективна ретроспектива 20-30 лет) можно видеть высокую вовлеченность субъектов промышленного производства в кластерные объединения на всех уровнях технологичности производств. Объективна тенденция роста «кластерной плотности» (доля субъектов отрасли, включенных в организационно оформленные промышленные агломерации — Bertolini P., Giovannetti E., 2006, [4])) национальной промышленности. Тенденция поступательного развития выражена и средними темпами изменения основных экономических показателей промышленных кластеров, представленными в табл. 2. Показатель роста инвестиций (среднегодовое значение 26,7%) субъектами кластеров выше аналогичного показателя по экономике в целом, что свидетельствует об понимании перспектив и преимуществ кооперационного взаимодействия в формате территориальных промышленных объединений.

Следует обратить внимание и на динамику показателя капиталовложений в научно-исследовательские и опытно-конструкторские работы — среднегодовое значение 14,7% (аналогичный показатель по промышленности в целом — 7,62%). Кластеры становятся центрами инновационного развития национальной экономики.

Эффективность инновационной деятель-

ности промышленных кластеров определяется уровнем кооперации субъектов, специализированных исполнителей отдельных этапов и работ цикла нововведения (от замысла до продажи готовой продукции). Организация и управление инновационным процессом в кластере имеет объективные отличия от корпоративных форм, в которых менеджмент иерархически выстроен по отношению к внутренним (собственным) ресурсам. Кластер, как объединение не аффилированных субъектов (академическая предпосылка «рыночности» отношений при территориальной агломерации промышленности), организует инновационный процесс в сетевой распределённой форме. Кооперация — основная хозяйственная форма организации инновационного процесса, часто воплощаемая не через субконтракцию, а консорциумы. Именно потому вопрос уровня «инновационной кооперации» (как совокупности научно-технической, исследовательской и производственной) является определяющим с позиции оценки эффективности промышленных кластеров как формы хозяйственного объединения.

Актуальность данной задачи определила инициализированный автором эксперимент, направленный на оценку уровня инновационной кооперации национальных промышленных кластеров. Автор интерпретировал экономическую статистику 104-х промышленных кластеров для оценки уровня научно-технической (НИ-

Таблица 2. Средние темпы («СТ»,%, 2012–2017) изменения основных экономических показателей промышленных кластеров. (Интерпретировано автором по данным «Кластерная политика», «Corvus», [3]).

Показатели	2012	2014	2015	2016	2017	CT
Численность специалистов,	914,0	913,5	926,6	947,7	968,2	1,2
тыс. чел.						
Число высокопроизводитель-	29048	39692	44587	51342	55143	13,8
ных рабочих мест, ед.						
Внутренние капиталовложения	292,5	530,9	655,8	809,9	946,1	26,7
кластеров, млрд. руб.						
Общий объем инвестиций кла-	416,7	514,3	564,4	619,0	643,4	9,1
стера, включая бюджетные вне-						
бюджетные, млрд. руб.						
Бюджет НИОКР, млрд. руб.	72,9	97,8	114,7	129,4	144,0	14,7

ОКР) и производственной кооперации (2015*). Эконометрическая форма оценки построена на рекомендациях «Глобальной кластерной обсерватории» («Global Cluster Observatory») и отражается через индикатор отношения внутреннего и общего (валового) товарооборота кластера дифференцировано по научно-техническому и производственному взаимодействию:

$$q^{IN} = QI^{N}/Q$$
 (1),
 $r \& dI^{N} = R \& DI^{N}/R \& D$

где

Q — товарооборот кластера: объем отгруженной организациями- участниками инновационной продукции собственного производства, инновационных работ и услуг, выполненных собственными силами (по формулировке Росстата), млрд. руб.;

R&D — объем работ и проектов в сфере научных исследований и разработок, выполняемых организациями-участниками кластера, млн. руб.;

 Q^{IN} — внутренний материальный товарооборот: стоимость сырья, материалов и комплектующих изделий, машин и оборудования приобретенных организациями — участниками кластера друг у друга, млн. руб.;

 $R\&D^{IN}$ — внутренний товарооборот кластера ОИС и НИОКР, млн. руб.

Соответственно модельному ряду автором рассчитаны локальные (кластеру) индикаторы научно-технической и производственной кооперации, фрагмент которых представлен в табл. 3. Выборка фрагмента претенциозна — представлены промышленные кластеры, которые в последующем контексте демонстрируют выявленные факторы успешности кооперации (кейсы).

Аналитическим итогом статистического эксперимента определяется оценка средних величин индикаторов. В рамках научно-технической кооперации обнаруживается средняя величина 6,7% внутренних контрактов на НИОКР, а средняя (не взвешенная) величина внутренней субконтракции в производственных циклах составляет 3,1%. Базой сопоставления в оценке величины индикаторов логично принять рекомендации «Глобальной кластерной обсерватории» («Global Cluster Observatory»), опре-

деляющей нижним порогом эффективности величину кооперации в размере 28,2%. Логика «порога» — объем кооперации, обеспечивающий реализацию экономических преимуществ кластера, как формы хозяйственной агломерации промышленности. Экономические эффекты (MAR) промышленного кластера проявляются по достижению порогового минимума. Соответственно, можно сделать вывод: инновационная кооперация российских промышленных кластеров критически низка в обоих компонентах взаимодействия — научно-технической, исследовательской и производственной. Что актуализирует вопрос эмпирического поиска факторов эффективности и механизмов управления инновационной кооперацией, раскрываемых в плоскости государственных мер стимулирования и регулирования кооперационного взаимодействия субъектов промышленных кластеров.

Оценка факторов эффективности кооперации может быть построена на изучении (метод «кейс-стади») национальных промышленных кластеров, имеющих высокий уровень индикатора (в частности, представленных в табл. 3) в научно-технической и (или) производственной компонентах. Автор проведены соответствующие эмпирические исследования и анализ, позволившие выделить факторы, влияющие на эффективность инновационной кооперации промышленных кластеров.

Фактор 1: исторические предпосылки территориальной концентрации производств, научно-исследовательских и образовательных центров. Это наиболее сильный фактор в формировании эффективной кооперации в национальной промышленности, поскольку обусловлен объективным пространственным распределением производительных сил. Например, «Кадошкинский электротехнический завод», «Электровыпрямитель», «НИИИС им. А.Н. Лодыгина» и другие предприятия, входящие в промышленный кластер «Энергоэффективная светотехника и интеллектуальные системы управления освещением» (табл. 3), взаимодействовали ранее на протяженности в 20 лет. Их объединение в кластер, скорее являлось декларацией, организационным оформлением ранее сложившегося кооперационного взаимодействия. Автор выделяет более 20 промышленных центров, оформление которых в кластеры построено на исторических

^{*} На 2018 год последнее наблюдение переменных, используемых в настоящем исследовании, официальных мониторинговых органов в рамках кластерной политики представлено 2015-м годом.

Таблица 3. Фрагмент статистики и оценки кооперации промышленных кластеров
по исследованиям автора (Обозначения в формуле 1)

Кластеры	Абсолютные значения				Доля, %	
-	Q	R&D	Q^{IN}	R&D ^{IN}	q ^{IN}	r&d ^{IN}
Республика Мордовия. Энергоэффек-	3,9	375	15,35	144,26	0,39	38,47
тивная светотехника и интеллектуаль-						
ные системы управления освещением						
Новые материалы, лазерные и радиаци-	4,73	2512	1110	874	23,47	34,79
онные технологии (г. Троицк)						
Москва. Кластер «Зеленоград»	16,9	7900	620	2700	3,67	34,18
Калужская область. Кластер фармацев-	26,9	500	250	97	0,93	19,40
тики, биотехнологий и биомедицины						
Новосибирская область. Инновацион-	54	12000	1110	700	2,06	5,83
ный кластер информационных и био-						
фармацевтических технологий						
Кластер ядерно-физических и нанотех-	15,85	8599	1068	322	6,74	3,74
нологий в г. Дубне						
Свердловская область. Титановый кла-	9,7	393	25	11,8	0,26	3,00
стер						
Томская область. Фармацевтика, меди-	4,45	3300	8,5	81,35	0,19	2,47
цинская техника и информационные						
технологии						
Консорциум «Научно-образовательно-	52	600	15	8,7	0,03	1,45
производственный кластер «Улья-						
новск-Авиа»						
Кемеровская область. Комплексная пе-	100	1500	3700	20	3,70	1,33
реработка угля и техногенных отходов						
Саровский инновационный кластер	51	5950	80	47	0,16	0,79
Ульяновская область. Ядерно-иннова-	3,82	21518,7	15	168	0,39	0,78
ционный кластер г. Димитровграда						
Камский инновационный территори-	233,6	12431,4	9952,7	25,6	4,26	0,21
ально- производственный кластер						

предпосылках. Впрочем, принцип территориальной близости ресурсов и производственных цепей добавленной стоимости рассматривался в теоретической экономике и государственном планировании еще в период СССР (фактически создавались «протокластеры»). Итак, данный фактор автор рассматривает как ключевой принцип при формировании национальной кластерной политики, программы инициации и организационного оформления новых территориальных агломераций промышленности.

Фактор 2: отнесение отраслевой принадлежности кластера к высоким технологиям. Данный фактор широко обсуждается в научной литературе (Henderson V. и др. [5]) и понимается солидарно [2]. Обратим внимание, что в структуре национальных кластеров высокотехнологичные занимают первое место по численности (46 из 104). Причина этого в высокой наукоем-

кости инновационных проектов данного технологического сектора. Высокая инвестиционная стоимость НИОКР обуславливает кооперацию, распределение исследовательских ресурсов, формирование консорциумов. Уровень научно-технической кооперации высокотехнологичного кластера «Зеленоград» составляет 34,18%, что обусловлено вышеприведёнными факторами. Аналогичен уровень и в других высокотехнологичных кластерах, в частности фармацевтическом, аэрокосмическом и информационных технологий. Объективна картина значительного уровня кооперации в промышленных кластерах (российских и зарубежных), основной инновационный продукт которых относится к VI технологическому укладу.

Фактор 3: присутствие в национальном кластере филиала крупного зарубежного предприятия. Таковые чаще выступают якорным

производственным предприятием, на которое ориентируются другие субъекты. Традиционно высокий уровень наукоемкости зарубежных предприятий обеспечивает значимый объем внутренней научно-технической кооперации. А поиск экономических эффектов снижения логистических издержек определяет приоритетность производственных контрактов в территориально локализованных российских промышленных предприятиях. Данный фактор наиболее сильно выражен в национальных фармацевтических кластерах: «Ново Нордиск» (подразделение Novo Nordisk A/S); «Хемофарм» (подразделение STADA CIS в составе международной группы компаний STADA AG); «Берлин-Фарма» (подразделение Berlin-Chemie AG в составе международной группы Menarini Ind) и другие. Создание привлекательных инвестиционных условий для зарубежных ТНК в российских промышленных агломерациях может стать сильным фактором их экономического роста.

Фактор 4: построение кластера вокруг консолидированного заказчика, выступающего ядром промышленной агломерации. Экономическая предпосылка таких объединений — маркетинговая, локализация различных по отраслевой принадлежности предприятий по отношению к устойчивому крупному заказчику. К промышленным кластерам, построенным на данном факторе, автор относит более 30% из выборки. Их стратегическую позицию определяют лидеры, ядро кластера: НИУ МИЭТ; Водо-

канал; РЖД; «НИИМЭ и Микрон»; «Ангстрем»; «НТ МДТ»; ГК «Элвис» и другие. Выраженная специфика, отличие от других предпосылок интеграции хозяйственных процессов и ресурсов, данных промышленных кластеров в полиотраслевом характере объединяющихся субъектов. Якорное предприятие имеет широкий диапазон закупок, определяющих и разнообразие включаемых в кластер производственных предприятий — поставщиков. Итак, фактор консолидированного заказчика определяет концентрацию субъектов — поставщиков в промышленном кластере.

Данные факторы могут рассматриваться как предпосылки при инициации новых промышленных кластеров или как управляющие решения при формулировке задачи повышения инновационной кооперации ранее созданных.

Итак, результатом обсуждения в настоящей публикации вопроса инновационной кооперации национальных промышленных кластеров автор определяет следующие выводы. Во-первых, на фоне экстенсивного роста кластерных объединений в России обнаруживается критически низкий уровень кооперации, не позволяющий достичь экономических эффектов промышленной агломерации. Во-вторых, автором обнаруживаются 4 фактора эффективности кластеризации, которые могут рассматриваться как предпосылки и механизмы повышения уровня инновационной кооперации.

Библиографический список

- 1. *Алексеев А.А., Дятлова Е.С., Фомина Н.Е.* Метод оценки инновационного потенциала региона с позиции формирования кластерной политики //Вопросы экономики и права. 2012. № 54. С. 106–111.
- 2. *Алексеев А.А., Хлебников К.В.* Анализ специфики организации высокотехнологичных инновационных кластеров // Экономические науки. 2016. № 142. С. 64–68.
- 3. Кластерная политика: концентрация потенциала для достижения глобальной конкурентоспособности / Под ред. И.М. Бортника, Л.М. Гохберга, А.Н. Клепача, П.Б. Рудника, О.В. Фомичева, А.Е. Шадрина. СПб.: «Corvus», 2015. 356 с.
- 4. *Bertolini, P., & Giovannetti, E.* Industrial districts and internationalization: The case of the agri-food industry in Modena, Italy. Entrepreneurship and Regional Development, 2006.
- 5. *Henderson, V., Kuncoro, A. and Turner, M.* Industrial Development in Cities. Journal of Political Economy, 103, 1995, 1067–1090.